Программирование столкновения трехмерных частиц

У меня есть часть кода, где две частицы сталкиваются при упругом столкновении. Я знаю массы и радиусы обеих частиц. Я знаю центральные точки обеих частиц, когда они сталкиваются. Я знаю скорости (включая направление) обеих частиц. Что я хочу выяснить, так это скорости (включая направление) обеих частиц после столкновения, и я хочу рассчитать их эффективным способом. Я знаю, что это больше вопрос физики, чем компьютерного программирования, но кажется, что программисты всегда лучше находят наиболее эффективный способ что-то сделать. Я программирую на С++. Я был бы признателен за любую помощь, которую я могу получить, даже просто указав мне правильное направление. Спасибо за помощь!


person user1216527    schedule 29.11.2012    source источник
comment
Я прочитал это Way Back, когда оно только появилось , IIRC был аккуратным и полезным. Но закрываю как не по теме.   -  person GManNickG    schedule 30.11.2012


Ответы (2)


Точное решение можно найти с помощью математических программ (Mathematica, sagemath и т. д.). Здесь я использовал пакет Python sympy. Алгоритм использует базис Грёбнера и алгоритм Бухбергера, которые могут решать системы полиномиальных уравнений.

Уравнения для упругого столкновения: 1) сохранение импульса, по одному измерению в каждом 2) сохранение энергии. 3) скорость первой частицы после столкновения направлена ​​в сторону заданного единичного вектора

Уравнения выглядят так:

uij :j-я составляющая скорости i-й частицы до столкновения.
vij :j-я составляющая скорости i-й частицы после столкновения.
n :единичный вектор, указывающий в направлении скорость первой частицы после столкновения
t :величина скорости первой частицы после столкновения
m :масса

from sympy import *

u11,u12,u13 = symbols('u11 u12 u13')
u21,u22,u23 = symbols('u21 u22 u23')
v11,v12,v13 = symbols('v11 v12 v13')
v21,v22,v23 = symbols('v21 v22 v23')
n1,n2,n3,t= symbols('n1 n2 n3 t')
m1,m2 = symbols('m1 m2')


p1 = m1*u11 +m2*u21 - m1*v11 -m2*v21
p2 = m1*u12 +m2*u22 - m1*v12 -m2*v22
p3 = m1*u13 +m2*u23 - m1*v13 -m2*v23

e = m1*(u11**2+ u12**2 +u13**2) + m2*(u21**2+ u22**2+ u23**2) \
-( m1*(v11**2+ v12**2 +v13**2) + m2*(v21**2+ v22**2+ v23**2 ))

d1 =v11 - t*n1
d2 =v12 - t*n2
d3 =v13 - t*n3


s = solve([p1,p2,p3,e,d1,d2,d3], v11,v12,v13,v21,v22,v23,t, set=True)

Решение: [t, v11, v12, v13, v21, v22, v23]

2*sqrt(-m1**2*n1**2*u12**2 - m1**2*n1**2*u13**2 + 2*m1**2*n1*n2*u11*u12 + 2*m1**2*n1*n3*u11*u13 - m1**2*n2**2*u11**2 - m1**2*n2**2*u13**2 + 2*m1**2*n2*n3*u12*u13 - m1**2*n3**2*u11**2 - m1**2*n3**2*u12**2 - 2*m1*m2*n1**2*u12*u22 - 2*m1*m2*n1**2*u13*u23 + 2*m1*m2*n1*n2*u11*u22 + 2*m1*m2*n1*n2*u12*u21 + 2*m1*m2*n1*n3*u11*u23 + 2*m1*m2*n1*n3*u13*u21 - 2*m1*m2*n2**2*u11*u21 - 2*m1*m2*n2**2*u13*u23 + 2*m1*m2*n2*n3*u12*u23 + 2*m1*m2*n2*n3*u13*u22 - 2*m1*m2*n3**2*u11*u21 - 2*m1*m2*n3**2*u12*u22 + m2**2*n1**2*u11**2 - 2*m2**2*n1**2*u11*u21 + m2**2*n1**2*u12**2 - 2*m2**2*n1**2*u12*u22 + m2**2*n1**2*u13**2 - 2*m2**2*n1**2*u13*u23 + m2**2*n1**2*u21**2 + 2*m2**2*n1*n2*u21*u22 + 2*m2**2*n1*n3*u21*u23 + m2**2*n2**2*u11**2 - 2*m2**2*n2**2*u11*u21 + m2**2*n2**2*u12**2 - 2*m2**2*n2**2*u12*u22 + m2**2*n2**2*u13**2 - 2*m2**2*n2**2*u13*u23 + m2**2*n2**2*u22**2 + 2*m2**2*n2*n3*u22*u23 + m2**2*n3**2*u11**2 - 2*m2**2*n3**2*u11*u21 + m2**2*n3**2*u12**2 - 2*m2**2*n3**2*u12*u22 + m2**2*n3**2*u13**2 - 2*m2**2*n3**2*u13*u23 + m2**2*n3**2*u23**2)/(2*m1*n1**2 + 2*m1*n2**2 + 2*m1*n3**2 + 2*m2*n1**2 + 2*m2*n2**2 + 2*m2*n3**2) + (m1*n1*u11 + m1*n2*u12 + m1*n3*u13 + m2*n1*u21 + m2*n2*u22 + m2*n3*u23)/((m1 + m2)*(n1**2 + n2**2 + n3**2)) 


n1*(m1*n1*u11 + m1*n2*u12 + m1*n3*u13 + m2*n1*u21 + m2*n2*u22 + m2*n3*u23 + sqrt(-m1**2*n1**2*u12**2 - m1**2*n1**2*u13**2 + 2*m1**2*n1*n2*u11*u12 + 2*m1**2*n1*n3*u11*u13 - m1**2*n2**2*u11**2 - m1**2*n2**2*u13**2 + 2*m1**2*n2*n3*u12*u13 - m1**2*n3**2*u11**2 - m1**2*n3**2*u12**2 - 2*m1*m2*n1**2*u12*u22 - 2*m1*m2*n1**2*u13*u23 + 2*m1*m2*n1*n2*u11*u22 + 2*m1*m2*n1*n2*u12*u21 + 2*m1*m2*n1*n3*u11*u23 + 2*m1*m2*n1*n3*u13*u21 - 2*m1*m2*n2**2*u11*u21 - 2*m1*m2*n2**2*u13*u23 + 2*m1*m2*n2*n3*u12*u23 + 2*m1*m2*n2*n3*u13*u22 - 2*m1*m2*n3**2*u11*u21 - 2*m1*m2*n3**2*u12*u22 + m2**2*n1**2*u11**2 - 2*m2**2*n1**2*u11*u21 + m2**2*n1**2*u12**2 - 2*m2**2*n1**2*u12*u22 + m2**2*n1**2*u13**2 - 2*m2**2*n1**2*u13*u23 + m2**2*n1**2*u21**2 + 2*m2**2*n1*n2*u21*u22 + 2*m2**2*n1*n3*u21*u23 + m2**2*n2**2*u11**2 - 2*m2**2*n2**2*u11*u21 + m2**2*n2**2*u12**2 - 2*m2**2*n2**2*u12*u22 + m2**2*n2**2*u13**2 - 2*m2**2*n2**2*u13*u23 + m2**2*n2**2*u22**2 + 2*m2**2*n2*n3*u22*u23 + m2**2*n3**2*u11**2 - 2*m2**2*n3**2*u11*u21 + m2**2*n3**2*u12**2 - 2*m2**2*n3**2*u12*u22 + m2**2*n3**2*u13**2 - 2*m2**2*n3**2*u13*u23 + m2**2*n3**2*u23**2))/(m1*n1**2 + m1*n2**2 + m1*n3**2 + m2*n1**2 + m2*n2**2 + m2*n3**2)


n2*(m1*n1*u11 + m1*n2*u12 + m1*n3*u13 + m2*n1*u21 + m2*n2*u22 + m2*n3*u23 + sqrt(-m1**2*n1**2*u12**2 - m1**2*n1**2*u13**2 + 2*m1**2*n1*n2*u11*u12 + 2*m1**2*n1*n3*u11*u13 - m1**2*n2**2*u11**2 - m1**2*n2**2*u13**2 + 2*m1**2*n2*n3*u12*u13 - m1**2*n3**2*u11**2 - m1**2*n3**2*u12**2 - 2*m1*m2*n1**2*u12*u22 - 2*m1*m2*n1**2*u13*u23 + 2*m1*m2*n1*n2*u11*u22 + 2*m1*m2*n1*n2*u12*u21 + 2*m1*m2*n1*n3*u11*u23 + 2*m1*m2*n1*n3*u13*u21 - 2*m1*m2*n2**2*u11*u21 - 2*m1*m2*n2**2*u13*u23 + 2*m1*m2*n2*n3*u12*u23 + 2*m1*m2*n2*n3*u13*u22 - 2*m1*m2*n3**2*u11*u21 - 2*m1*m2*n3**2*u12*u22 + m2**2*n1**2*u11**2 - 2*m2**2*n1**2*u11*u21 + m2**2*n1**2*u12**2 - 2*m2**2*n1**2*u12*u22 + m2**2*n1**2*u13**2 - 2*m2**2*n1**2*u13*u23 + m2**2*n1**2*u21**2 + 2*m2**2*n1*n2*u21*u22 + 2*m2**2*n1*n3*u21*u23 + m2**2*n2**2*u11**2 - 2*m2**2*n2**2*u11*u21 + m2**2*n2**2*u12**2 - 2*m2**2*n2**2*u12*u22 + m2**2*n2**2*u13**2 - 2*m2**2*n2**2*u13*u23 + m2**2*n2**2*u22**2 + 2*m2**2*n2*n3*u22*u23 + m2**2*n3**2*u11**2 - 2*m2**2*n3**2*u11*u21 + m2**2*n3**2*u12**2 - 2*m2**2*n3**2*u12*u22 + m2**2*n3**2*u13**2 - 2*m2**2*n3**2*u13*u23 + m2**2*n3**2*u23**2))/(m1*n1**2 + m1*n2**2 + m1*n3**2 + m2*n1**2 + m2*n2**2 + m2*n3**2)


n3*(m1*n1*u11 + m1*n2*u12 + m1*n3*u13 + m2*n1*u21 + m2*n2*u22 + m2*n3*u23 + sqrt(-m1**2*n1**2*u12**2 - m1**2*n1**2*u13**2 + 2*m1**2*n1*n2*u11*u12 + 2*m1**2*n1*n3*u11*u13 - m1**2*n2**2*u11**2 - m1**2*n2**2*u13**2 + 2*m1**2*n2*n3*u12*u13 - m1**2*n3**2*u11**2 - m1**2*n3**2*u12**2 - 2*m1*m2*n1**2*u12*u22 - 2*m1*m2*n1**2*u13*u23 + 2*m1*m2*n1*n2*u11*u22 + 2*m1*m2*n1*n2*u12*u21 + 2*m1*m2*n1*n3*u11*u23 + 2*m1*m2*n1*n3*u13*u21 - 2*m1*m2*n2**2*u11*u21 - 2*m1*m2*n2**2*u13*u23 + 2*m1*m2*n2*n3*u12*u23 + 2*m1*m2*n2*n3*u13*u22 - 2*m1*m2*n3**2*u11*u21 - 2*m1*m2*n3**2*u12*u22 + m2**2*n1**2*u11**2 - 2*m2**2*n1**2*u11*u21 + m2**2*n1**2*u12**2 - 2*m2**2*n1**2*u12*u22 + m2**2*n1**2*u13**2 - 2*m2**2*n1**2*u13*u23 + m2**2*n1**2*u21**2 + 2*m2**2*n1*n2*u21*u22 + 2*m2**2*n1*n3*u21*u23 + m2**2*n2**2*u11**2 - 2*m2**2*n2**2*u11*u21 + m2**2*n2**2*u12**2 - 2*m2**2*n2**2*u12*u22 + m2**2*n2**2*u13**2 - 2*m2**2*n2**2*u13*u23 + m2**2*n2**2*u22**2 + 2*m2**2*n2*n3*u22*u23 + m2**2*n3**2*u11**2 - 2*m2**2*n3**2*u11*u21 + m2**2*n3**2*u12**2 - 2*m2**2*n3**2*u12*u22 + m2**2*n3**2*u13**2 - 2*m2**2*n3**2*u13*u23 + m2**2*n3**2*u23**2))/(m1*n1**2 + m1*n2**2 + m1*n3**2 + m2*n1**2 + m2*n2**2 + m2*n3**2)


(-m1**2*n1*n2*u12 - m1**2*n1*n3*u13 + m1**2*n2**2*u11 + m1**2*n3**2*u11 + m1*m2*n1**2*u11 - m1*m2*n1*n2*u22 - m1*m2*n1*n3*u23 + m1*m2*n2**2*u11 + m1*m2*n2**2*u21 + m1*m2*n3**2*u11 + m1*m2*n3**2*u21 - m1*n1*sqrt(-m1**2*n1**2*u12**2 - m1**2*n1**2*u13**2 + 2*m1**2*n1*n2*u11*u12 + 2*m1**2*n1*n3*u11*u13 - m1**2*n2**2*u11**2 - m1**2*n2**2*u13**2 + 2*m1**2*n2*n3*u12*u13 - m1**2*n3**2*u11**2 - m1**2*n3**2*u12**2 - 2*m1*m2*n1**2*u12*u22 - 2*m1*m2*n1**2*u13*u23 + 2*m1*m2*n1*n2*u11*u22 + 2*m1*m2*n1*n2*u12*u21 + 2*m1*m2*n1*n3*u11*u23 + 2*m1*m2*n1*n3*u13*u21 - 2*m1*m2*n2**2*u11*u21 - 2*m1*m2*n2**2*u13*u23 + 2*m1*m2*n2*n3*u12*u23 + 2*m1*m2*n2*n3*u13*u22 - 2*m1*m2*n3**2*u11*u21 - 2*m1*m2*n3**2*u12*u22 + m2**2*n1**2*u11**2 - 2*m2**2*n1**2*u11*u21 + m2**2*n1**2*u12**2 - 2*m2**2*n1**2*u12*u22 + m2**2*n1**2*u13**2 - 2*m2**2*n1**2*u13*u23 + m2**2*n1**2*u21**2 + 2*m2**2*n1*n2*u21*u22 + 2*m2**2*n1*n3*u21*u23 + m2**2*n2**2*u11**2 - 2*m2**2*n2**2*u11*u21 + m2**2*n2**2*u12**2 - 2*m2**2*n2**2*u12*u22 + m2**2*n2**2*u13**2 - 2*m2**2*n2**2*u13*u23 + m2**2*n2**2*u22**2 + 2*m2**2*n2*n3*u22*u23 + m2**2*n3**2*u11**2 - 2*m2**2*n3**2*u11*u21 + m2**2*n3**2*u12**2 - 2*m2**2*n3**2*u12*u22 + m2**2*n3**2*u13**2 - 2*m2**2*n3**2*u13*u23 + m2**2*n3**2*u23**2) + m2**2*n1**2*u21 + m2**2*n2**2*u21 + m2**2*n3**2*u21)/(m2*(m1*n1**2 + m1*n2**2 + m1*n3**2 + m2*n1**2 + m2*n2**2 + m2*n3**2))


(m1**2*n1**2*u12 - m1**2*n1*n2*u11 - m1**2*n2*n3*u13 + m1**2*n3**2*u12 + m1*m2*n1**2*u12 + m1*m2*n1**2*u22 - m1*m2*n1*n2*u21 + m1*m2*n2**2*u12 - m1*m2*n2*n3*u23 + m1*m2*n3**2*u12 + m1*m2*n3**2*u22 - m1*n2*sqrt(-m1**2*n1**2*u12**2 - m1**2*n1**2*u13**2 + 2*m1**2*n1*n2*u11*u12 + 2*m1**2*n1*n3*u11*u13 - m1**2*n2**2*u11**2 - m1**2*n2**2*u13**2 + 2*m1**2*n2*n3*u12*u13 - m1**2*n3**2*u11**2 - m1**2*n3**2*u12**2 - 2*m1*m2*n1**2*u12*u22 - 2*m1*m2*n1**2*u13*u23 + 2*m1*m2*n1*n2*u11*u22 + 2*m1*m2*n1*n2*u12*u21 + 2*m1*m2*n1*n3*u11*u23 + 2*m1*m2*n1*n3*u13*u21 - 2*m1*m2*n2**2*u11*u21 - 2*m1*m2*n2**2*u13*u23 + 2*m1*m2*n2*n3*u12*u23 + 2*m1*m2*n2*n3*u13*u22 - 2*m1*m2*n3**2*u11*u21 - 2*m1*m2*n3**2*u12*u22 + m2**2*n1**2*u11**2 - 2*m2**2*n1**2*u11*u21 + m2**2*n1**2*u12**2 - 2*m2**2*n1**2*u12*u22 + m2**2*n1**2*u13**2 - 2*m2**2*n1**2*u13*u23 + m2**2*n1**2*u21**2 + 2*m2**2*n1*n2*u21*u22 + 2*m2**2*n1*n3*u21*u23 + m2**2*n2**2*u11**2 - 2*m2**2*n2**2*u11*u21 + m2**2*n2**2*u12**2 - 2*m2**2*n2**2*u12*u22 + m2**2*n2**2*u13**2 - 2*m2**2*n2**2*u13*u23 + m2**2*n2**2*u22**2 + 2*m2**2*n2*n3*u22*u23 + m2**2*n3**2*u11**2 - 2*m2**2*n3**2*u11*u21 + m2**2*n3**2*u12**2 - 2*m2**2*n3**2*u12*u22 + m2**2*n3**2*u13**2 - 2*m2**2*n3**2*u13*u23 + m2**2*n3**2*u23**2) + m2**2*n1**2*u22 + m2**2*n2**2*u22 + m2**2*n3**2*u22)/(m2*(m1*n1**2 + m1*n2**2 + m1*n3**2 + m2*n1**2 + m2*n2**2 + m2*n3**2))


(m1**2*n1**2*u13 - m1**2*n1*n3*u11 + m1**2*n2**2*u13 - m1**2*n2*n3*u12 + m1*m2*n1**2*u13 + m1*m2*n1**2*u23 - m1*m2*n1*n3*u21 + m1*m2*n2**2*u13 + m1*m2*n2**2*u23 - m1*m2*n2*n3*u22 + m1*m2*n3**2*u13 - m1*n3*sqrt(-m1**2*n1**2*u12**2 - m1**2*n1**2*u13**2 + 2*m1**2*n1*n2*u11*u12 + 2*m1**2*n1*n3*u11*u13 - m1**2*n2**2*u11**2 - m1**2*n2**2*u13**2 + 2*m1**2*n2*n3*u12*u13 - m1**2*n3**2*u11**2 - m1**2*n3**2*u12**2 - 2*m1*m2*n1**2*u12*u22 - 2*m1*m2*n1**2*u13*u23 + 2*m1*m2*n1*n2*u11*u22 + 2*m1*m2*n1*n2*u12*u21 + 2*m1*m2*n1*n3*u11*u23 + 2*m1*m2*n1*n3*u13*u21 - 2*m1*m2*n2**2*u11*u21 - 2*m1*m2*n2**2*u13*u23 + 2*m1*m2*n2*n3*u12*u23 + 2*m1*m2*n2*n3*u13*u22 - 2*m1*m2*n3**2*u11*u21 - 2*m1*m2*n3**2*u12*u22 + m2**2*n1**2*u11**2 - 2*m2**2*n1**2*u11*u21 + m2**2*n1**2*u12**2 - 2*m2**2*n1**2*u12*u22 + m2**2*n1**2*u13**2 - 2*m2**2*n1**2*u13*u23 + m2**2*n1**2*u21**2 + 2*m2**2*n1*n2*u21*u22 + 2*m2**2*n1*n3*u21*u23 + m2**2*n2**2*u11**2 - 2*m2**2*n2**2*u11*u21 + m2**2*n2**2*u12**2 - 2*m2**2*n2**2*u12*u22 + m2**2*n2**2*u13**2 - 2*m2**2*n2**2*u13*u23 + m2**2*n2**2*u22**2 + 2*m2**2*n2*n3*u22*u23 + m2**2*n3**2*u11**2 - 2*m2**2*n3**2*u11*u21 + m2**2*n3**2*u12**2 - 2*m2**2*n3**2*u12*u22 + m2**2*n3**2*u13**2 - 2*m2**2*n3**2*u13*u23 + m2**2*n3**2*u23**2) + m2**2*n1**2*u23 + m2**2*n2**2*u23 + m2**2*n3**2*u23)/(m2*(m1*n1**2 + m1*n2**2 + m1*n3**2 + m2*n1**2 + m2*n2**2 + m2*n3**2))
person golopot    schedule 19.11.2014

Я рекомендую вам это paper опубликовано Pi Речь идет о моделировании твердого тела и содержит некоторый код, так что вы можете попробовать! :-)

Здесь вы также можете скачать некоторый код C++, связанный с движением в 3D.

person Tengis    schedule 29.11.2012