Как сохранить обученную модель в тензорном потоке?

Я написал сверточную нейронную сеть в тензорном потоке для работы с набором данных mnist. Все работает отлично, но я хочу сохранить модель с помощью tf.train.Saver(). Как я это сделаю? Вот мой код:

from __future__ import print_function

import tensorflow as tf

# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

# Parameters
learning_rate = 0.001
training_iters = 200000
batch_size = 128
display_step = 10

# Network Parameters
n_input = 784 # MNIST data input (img shape: 28*28)
n_classes = 10 # MNIST total classes (0-9 digits)
dropout = 0.75 # Dropout, probability to keep units

# tf Graph input
x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32, [None, n_classes])
keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)


# Create some wrappers for simplicity
def conv2d(x, W, b, strides=1):
    # Conv2D wrapper, with bias and relu activation
    x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
    x = tf.nn.bias_add(x, b)
    return tf.nn.relu(x)


def maxpool2d(x, k=2):
    # MaxPool2D wrapper
    return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
                      padding='SAME')


# Create model
def conv_net(x, weights, biases, dropout):
    # Reshape input picture
    x = tf.reshape(x, shape=[-1, 28, 28, 1])

    # Convolution Layer
    conv1 = conv2d(x, weights['wc1'], biases['bc1'])
    # Max Pooling (down-sampling)
    conv1 = maxpool2d(conv1, k=2)

    # Convolution Layer
    conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
    # Max Pooling (down-sampling)
    conv2 = maxpool2d(conv2, k=2)

    # Fully connected layer
    # Reshape conv2 output to fit fully connected layer input
    fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])
    fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
    fc1 = tf.nn.relu(fc1)
    # Apply Dropout
    fc1 = tf.nn.dropout(fc1, dropout)

    # Output, class prediction
    out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
    return out

# Store layers weight & bias
weights = {
    # 5x5 conv, 1 input, 32 outputs
    'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
    # 5x5 conv, 32 inputs, 64 outputs
    'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
    # fully connected, 7*7*64 inputs, 1024 outputs
    'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),
    # 1024 inputs, 10 outputs (class prediction)
    'out': tf.Variable(tf.random_normal([1024, n_classes]))
}

biases = {
    'bc1': tf.Variable(tf.random_normal([32])),
    'bc2': tf.Variable(tf.random_normal([64])),
    'bd1': tf.Variable(tf.random_normal([1024])),
    'out': tf.Variable(tf.random_normal([n_classes]))
}

# Construct model
pred = conv_net(x, weights, biases, keep_prob)

# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, 
labels=y))
optimizer = 
tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

# Evaluate model
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

# Initializing the variables
init = tf.initialize_all_variables()

# Launch the graph
with tf.Session() as sess:
    sess.run(init)
    step = 1
    # Keep training until reach max iterations
    while step * batch_size < training_iters:
        batch_x, batch_y = mnist.train.next_batch(batch_size)
        # Run optimization op (backprop)
        sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
                                       keep_prob: dropout})
        if step % display_step == 0:
            # Calculate batch loss and accuracy
            loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,
                                                              y: batch_y,
                                                             keep_prob: 1.})
            print("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
                  "{:.6f}".format(loss) + ", Training Accuracy= " + \
                  "{:.5f}".format(acc))
        step += 1
    print("Optimization Finished!")

    # Calculate accuracy for 256 mnist test images
    print("Testing Accuracy:", \
        sess.run(accuracy, feed_dict={x: mnist.test.images[:256],
                                      y: mnist.test.labels[:256],
                                      keep_prob: 1.}))

person Jonas Stepanik    schedule 26.05.2017    source источник
comment
Я думаю, что здесь был дан ответ. Работает ли это для вас? stackoverflow.com /вопросы/33759623/   -  person Aditya Lahiri    schedule 26.05.2017


Ответы (2)


Самый простой способ сохранить и восстановить:

Сохранить:

saver = tf.train.Saver(max_to_keep=1) 
with tf.Session() as sess:
    # train your model, then:
    savePath = saver.save(sess, 'someDir/my_model.ckpt')

Для восстановления:

with tf.Session() as sess:
    saver = tf.train.import_meta_graph('someDir/my_model.ckpt.meta')
    saver.restore(sess, pathModel + 'someDir/my_model.ckpt')
    # access a variable from the saved Graph, and so on:
    someVar = sess.run('varName:0')

Это должно сделать это

person VS_FF    schedule 26.05.2017
comment
У меня 2 вопроса: если я загрузил контрольную точку, нужно ли мне снова вызывать sess.run(init)? - person Jonas Stepanik; 26.05.2017
comment
и что означает этот 0 в 'varName:0'? - person Jonas Stepanik; 26.05.2017
comment
Будьте осторожны с выполнением init, потому что он, вероятно, сбросит все ваши обученные переменные (веса/предвзятости). Если вам нужно что-то инициализировать, сделайте это перед загрузкой этого. Если я не ошибаюсь, 0 в именах переменных как-то связаны с тем, сколько раз ваш график был сохранен? Я могу ошибаться в этом. Обратите внимание, что в приведенном выше коде max_to_keep=1. Может быть, если вы поиграетесь с этим, то будет более одной версии каждой переменной? Я никогда не пробовал сам, так как сохраняю окончательную версию только после завершения полного обучения. - person VS_FF; 26.05.2017
comment
Потому что идея в том, что вы можете иметь несколько контрольных точек одной и той же модели на разных этапах обучения. Таким образом, у вас могут быть промежуточные версии переменных, которые были обучены меньше или больше, чем в некоторых более поздних/ранних версиях... - person VS_FF; 26.05.2017

Рассмотрите возможность сохранения результатов обучения нейронной сети в базу данных.

Корень идеи описан здесь:

Подсистема оценки нейронной сети на PL/SQL для распознавания рукописных цифр

https://db-blog.web.cern.ch/blog/luca-canali/2016-07-neural-network-scoring-engine-plsql-recognizing-handwriting-digits

Репозиторий кода для этого примера находится здесь:

https://github.com/LucaCanali/Miscellaneous/blob/master/PLSQL_Neural_Network/MNIST_oracle_plsql.ipynb

Таким образом можно обучить сеть один раз, а затем использовать процедуры базы данных для ее использования.

person Mikolas Pansky    schedule 09.06.2017